
Custom Fee Token
Security Assessment (Summary Report)

August 1, 2024

Prepared for:

Harry Kalodner, Steven Goldfeder, and Ed Felten
Offchain Labs

Prepared by: Gustavo Grieco, Troy Sargent, and Kurt Willis

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Offchain Labs Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Offchain
Labs under the terms of the project statement of work and has been made public at
Offchain Labs’s request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Offchain Labs Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 4
Project Targets 5
Executive Summary 6
Summary of Findings 7
Detailed Findings 8

1. Double entrypoint or DeFi integrated ERC20 tokens should not be used 8
2. Token bridge will receive and lock ether 10
3. Cross-chain message out-of-order execution could affect correct token bridge
deployment 11

A. Vulnerability Categories 12
B. Development Practices 15

Trail of Bits 3 Offchain Labs Security Assessment
PUBLIC

Project Summary

Contact Information
The following project manager was associated with this project:

Mary O’Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering director was associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Gustavo Grieco, Consultant Troy Sargent, Consultant
gustavo.grieco@trailofbits.com troy.sargent@trailofbits.com

Kurt Willis, Consultant
kurt.willis@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

September 25, 2023 Pre-project kickoff call

October 2, 2023 Delivery of report draft

October 2, 2023 Report readout meeting

August 1, 2024 Delivery of summary report

Trail of Bits 4 Offchain Labs Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the targets listed below.

nitro-contracts PR#19
Repository https://github.com/OffchainLabs/nitro-contracts/pull/19

Version PR#19 (f23c15c...7dc1aa4)

Type Solidity

Platform EVM

token-bridge-contracts PR#33
Repository https://github.com/OffchainLabs/token-bridge-contracts/pull/33

Version PR#33 (8cb573a...6396a17)

Type Solidity

Platform EVM

token-bridge-contracts PR#34
Repository https://github.com/OffchainLabs/token-bridge-contracts/pull/34

Version PR#34 (32d00e7...9503d3c)

Type Solidity

Platform EVM

Trail of Bits 5 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro-contracts/pull/19
https://github.com/OffchainLabs/token-bridge-contracts/pull/33
https://github.com/OffchainLabs/token-bridge-contracts/pull/34

Executive Summary

Engagement Overview
Offchain Labs engaged Trail of Bits to review the security of the Custom Fee Token
implemented in the PRs detailed in the Project Targets section. These changes allow new
rollups to be deployed using a specific ERC20 implementation that will be used to pay
transaction fees.

A team of three consultants conducted the review from September 21, 2023 to September
29, 2023, for a total of three engineer-weeks of effort. With full access to source code and
documentation, we performed a manual review of the codebase.

Observations and Impact
Offchain Labs added a feature to allow rollup owners to select a specific ERC20 token on
the parent chain that will be used to pay for the transaction fees, completely replacing the
use of ETH in the child chain. This new feature requires changes in the token bridge and
ArbOS, including new code to correctly deploy the token bridge in the chain.

We focused on the changes in each PR, but we have not performed a full review of the
repositories involved. We also worked under the assumption that rollup owners will
carefully review the available documentation before deployment, in order to avoid known
issues with certain types of tokens (e.g., rebasing tokens).

This review uncovered two high-severity issues related to the assumptions about how
ERC20 should behave (TOB-ARB-CFT-001) and how funds can flow into the token bridge
contracts (TOB-ARB-CFT-002).

Recommendations
We recommend that Offchain Labs fix the reported issues and ensure that the token bridge
documentation is up to date before deployment to ensure that rollup owners use suitable
ERC20 as fee tokens.

Trail of Bits 6 Offchain Labs Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Double entrypoint or DeFi integrated ERC20
tokens should not be used

Access Controls High

2 Token bridge will receive and lock ether Undefined
Behavior

High

3 Cross-chain message out-of-order execution
could affect correct token bridge deployment

Undefined
Behavior

Medium

Trail of Bits 7 Offchain Labs Security Assessment
PUBLIC

Detailed Findings

1. Double entrypoint or DeFi integrated ERC20 tokens should not be used

Severity: High Difficulty: High

Type: Access Controls Finding ID: TOB-ARB-CFT-001

Target: src/bridge/ERC20Bridge.sol

Description
The use of ERC20 tokens with two or more entrypoints can allow an attack to drain the
bridge.

The use of ERC20 tokens for paying fees in the rollup/bridge requires a number of checks
and restrictions to avoid loss of funds. One of these checks is implemented in the bridge
when a withdraw is executed:

function _executeLowLevelCall(
address to,
uint256 value,
bytes memory data

) internal override returns (bool success, bytes memory returnData) {
// we don't allow outgoing calls to native token contract because it could
// result in loss of native tokens which are escrowed by ERC20Bridge
if (to == nativeToken) {

gvladika marked this conversation as resolved.
revert CallTargetNotAllowed(nativeToken);

}

// first release native token
IERC20(nativeToken).safeTransfer(to, value);
success = true;
…

Figure 1.1: Header of the _executeLowLevelCall function in
src/bridge/ERC20Bridge.sol

Users are not allowed to directly call the native token address; otherwise, they could
transfer funds out. However, this check will not be sufficient if the token has more than one
entrypoint (e.g., when two different addresses can be used to execute ERC20 operations,
such as transfer).

Trail of Bits 8 Offchain Labs Security Assessment
PUBLIC

Another problematic type of ERC20 is tightly integrated in DeFi applications. For instance,
the LUSD ERC20 token contains the following function:

function burn(address _account, uint256 _amount) external override {
_requireCallerIsBOorTroveMorSP();
_burn(_account, _amount);

}

Figure 1.2: Burn function from the LUSD token

This token can be minted or burned through a manager contract (which is different from
the token contract itself), thereby bypassing the above check. In particular, this DeFi allows
LUSD token owners to open, close, or repay vaults, so all of the bridge ERC20 LUSD could
be easily manipulated using the low-level callback without requiring allowances to be set
up.

Exploit Scenario
A user creates a rollup that uses a double entrypoint tokens for fees, allowing any user to
drain the bridge contract.

Recommendations
Short term, clearly document this limitation to make sure of this potential security issue.

Long term, review the assumptions required by ERC20 tokens in order to be integrated in
each component.

References
● Medium-severity bug in Balancer Labs

Trail of Bits 9 Offchain Labs Security Assessment
PUBLIC

https://coinmarketcap.com/currencies/liquity-usd/
https://forum.balancer.fi/t/medium-severity-bug-found/3161

2. Token bridge will receive and lock ether

Severity: High Difficulty: Medium

Type: Undefined Behavior Finding ID: TOB-ARB-CFT-002

Target: tokenbridge/ethereum/gateway/L1OrbitERC20Gateway.sol

Description
The token bridge’s entrypoint for deposits can receive ether, but the token bridge cannot
retrieve it in any way.

Users deposit ERC20 tokens using the outboundTransfer* functions from the token
bridge. An example is shown below:

function outboundTransferCustomRefund(
address _l1Token,
address _refundTo,
address _to,
uint256 _amount,
uint256 _maxGas,
uint256 _gasPriceBid,
bytes calldata _data

) public payable override returns (bytes memory res) {
…

Figure 1.2: Header of the outboundTransferCustomRefund function in
src/tokenbridge/ethereum/gateway/L1OrbitERC20Gateway.sol

This function will trigger the creation of a retryable ticket, so it needs funds to pay fees and
gas. These fees can be paid using ether or some specific ERC20, but in different token
bridge deployments that share the same interface. In the latter case, the entry function
should not receive ether even though it is payable.

Exploit Scenario
A user accidentally provides ether to a token bridge associated with a rollup that uses a
custom ERC20 token fee. The ether will be locked in the token bridge.

Recommendations
Short term, add a condition that checks the value provided into the outboundTransfer
function, and have the function revert if the value is positive.

Long term, review how funds flow from the user to/from different components, and ensure
that there are no situations where tokens can be trapped.

Trail of Bits 10 Offchain Labs Security Assessment
PUBLIC

3. Cross-chain message out-of-order execution could a�ect correct token
bridge deployment

Severity: Medium Difficulty: High

Type: Undefined Behavior Finding ID: TOB-ARB-CFT-002

Target: tokenbridge/ethereum/L1AtomicTokenBridgeCreator.sol

Description
Out-of-order execution of outbox transactions on L1 and retryable tickets on L2 can lead to
unexpected results when a token bridge is created. This issue relies on the specific ordering
of retryable tickets.

The token bridge creation requires retryable tickets to be submitted and executed in a
certain order:

/**
* @notice Deploy and initialize token bridge, both L1 and L2 sides, as part of

a single TX.
* @dev This is a single entrypoint of L1 token bridge creator. Function deploys

L1 side of token bridge and then uses
* 2 retryable tickets to deploy L2 side. 1st retryable deploys L2 factory.

And then 'retryable sender' contract
* is called to issue 2nd retryable which deploys and inits the rest of the

contracts. L2 chain is determined
* by `inbox` parameter.
*
* Token bridge can be deployed only once for certain inbox. Any further

calls to `createTokenBridge` will revert
* because L1 salts are already used at that point and L1 contracts are

already deployed at canonical addresses
* for that inbox.
*/
function createTokenBridge(

address inbox,
address rollupOwner,
uint256 maxGasForContracts,
uint256 gasPriceBid

) external payable {
…

Figure 3.1: Header of the createTokenBridge function in
L1AtomicTokenBridgeCreator.sol

Trail of Bits 11 Offchain Labs Security Assessment
PUBLIC

However, a malicious user can leverage the out-of-order execution of retryable tickets to
break the assumptions of the token bridge creator and produce a failed deployment.

Exploit Scenario
Alice starts the deployment of a canonical token bridge for a new rollup. Eve notices this
deployment and spams the rollup bridge with transactions to increase the L2 gas cost, and
the tickets are not auto-redeemed. Later, Eve can trigger the tickets out of order to produce
a broken deployment. Alice will not be able to redeploy, and no canonical deployment of
the token bridge can be used.

Recommendations
Short term, consider migrating part of the deployment steps to L2 and require a single
retryable ticket to be executed.

Long term, review all possible ways in which the out-of-order execution of retryable tickets
may affect each component and document.

Trail of Bits 12 Offchain Labs Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 13 Offchain Labs Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 14 Offchain Labs Security Assessment
PUBLIC

B. Development Practices

In this section, we provide best practices regarding code complexity management.

● When designing smart contracts with the purpose of reuse, try to minimize
inheritance whenever possible, as it often can lead to the creation of multiple levels
of indirection and make the execution flow very hard to follow. While some amount
of inheritance is expected, it can easily be abused.

An example of a complex inheritance structure can be seen when tracing the
internal function calls when creating deposits to L1OrbitERC20Gateway:

● L1GatewayRouter.outboundTransferCustomRefund
● super (L1ERC20Gateway).outboundTransferCustomRefund
● super (L1ArbitrumGateway).outboundTransferCustomRefund
● L1ArbitrumGateway._parseUserEncodedData (overloaded in

L1OrbitERC20Gateway)
● L1ArbitrumGateway.calculateL2TokenAddress (overloaded in

L1ERC20Gateway)
● L1ArbitrumGateway.getOutboundCalldata (overloaded in

L1ERC20Gateway)
● L1ArbitrumGateway._initiateDeposit (overloaded in

L1OrbitERC20Gateway)
● L1ArbitrumMessenger.sendTxToL2CustomRefund
● L1ArbitrumMessenger._createRetryable (overloaded in

L1OrbitERC20Gateway)

As shown in figure B.1, the calls jump back and forth between four contracts using
the super keyword and function overloading. Abstraction is useful for separating
concerns and reducing code duplication; however, it should not be overused. Too
much abstraction can make following execution traces difficult and introduce
significant mental overhead.

Trail of Bits 15 Offchain Labs Security Assessment
PUBLIC

Figure B.1: Arbitrum Gateway’s complex inheritance structure

Trail of Bits 16 Offchain Labs Security Assessment
PUBLIC

● When overloading functions, aim to place optional parameters at the end if possible.
This makes it clearer what parameters are optional and reduces cognitive load by
not shifting positions of other parameters too much.

// ...
function registerTokenToL2(

address _l2Address,
uint256 _maxGas,
uint256 _gasPriceBid,
uint256 _maxSubmissionCost,
uint256 _feeAmount

) external returns (uint256) {
return

registerTokenToL2(
_l2Address,
_maxGas,
_gasPriceBid,
_maxSubmissionCost,
msg.sender,
_feeAmount

);
}

// ...
function registerTokenToL2(

address _l2Address,
uint256 _maxGas,
uint256 _gasPriceBid,
uint256 _maxSubmissionCost,
address _creditBackAddress,
uint256 _feeAmount

) public returns (uint256) {
return

_registerTokenToL2(
_l2Address,
_maxGas,
_gasPriceBid,
_maxSubmissionCost,
_creditBackAddress,
_feeAmount

);
}

Figure B.2: Overloading registerTokenToL2 in L1OrbitCustomGateway

● Aim to keep the same order when passing on function parameters.

function createOutboundTxCustomRefund(
address _refundTo,
address _from,
uint256, /* _tokenAmount */

Trail of Bits 17 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/token-bridge-contracts/blob/07234a0026a2bc01164227173eb11fa4d84cc298/contracts/tokenbridge/ethereum/gateway/L1OrbitCustomGateway.sol#L17-L72

uint256 _maxGas,
uint256 _gasPriceBid,
uint256 _maxSubmissionCost,
bytes memory _outboundCalldata

) internal virtual returns (uint256) {
// We make this function virtual since outboundTransfer logic is the same for

many gateways
// but sometimes (ie weth) you construct the outgoing message differently.

// msg.value is sent, but 0 is set to the L2 call value
// the eth sent is used to pay for the tx's gas
return

sendTxToL2CustomRefund(
inbox,
counterpartGateway,
_refundTo,
_from,
msg.value, // we forward the L1 call value to the inbox
0, // l2 call value 0 by default
L2GasParams({

_maxSubmissionCost: _maxSubmissionCost,
_maxGas: _maxGas,
_gasPriceBid: _gasPriceBid

}),
_outboundCalldata

);
}

Figure B.3: L2GasParams are not in order with function parameters. (L1ArbitrumGateway)

● Aim to be consistent with function variable names when possible, or declare
temporary variables and add comments explaining variable name switching.

function _initiateDeposit(
address _refundTo,
address _from,
uint256, // _amount, this info is already contained in _data
uint256 _maxGas,
uint256 _gasPriceBid,
uint256 _maxSubmissionCost,
uint256 tokenTotalFeeAmount,
bytes memory _data

) internal override returns (uint256) {
return

sendTxToL2CustomRefund(
inbox,
counterpartGateway,
_refundTo,
_from,
tokenTotalFeeAmount,
0,
L2GasParams({

Trail of Bits 18 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/token-bridge-contracts/blob/07234a0026a2bc01164227173eb11fa4d84cc298/contracts/tokenbridge/ethereum/gateway/L1ArbitrumGateway.sol#L151-L180

_maxSubmissionCost: _maxSubmissionCost,
_maxGas: _maxGas,
_gasPriceBid: _gasPriceBid

}),
_data

);
}

Figure B.4: tokenTotalFeeAmount is mapped to _l1CallValue. (L1OrbitERC20Gateway)

function sendTxToL2CustomRefund(
address _inbox,
address _to,
address _refundTo,
address _user,
uint256 _l1CallValue,
uint256 _l2CallValue,
L2GasParams memory _l2GasParams,
bytes memory _data

) internal returns (uint256) {
// ...

}

Figure B.5: tokenTotalFeeAmount is mapped to _l1CallValue. (L1ArbitrumMessenger)

● Use named parameters or temporarily declare named variables when passing in
unnamed constants as function parameters.

function _initiateDeposit(
address _refundTo,
address _from,
uint256, // _amount, this info is already contained in _data
uint256 _maxGas,
uint256 _gasPriceBid,
uint256 _maxSubmissionCost,
uint256 tokenTotalFeeAmount,
bytes memory _data

) internal override returns (uint256) {
return

sendTxToL2CustomRefund(
inbox,
counterpartGateway,
_refundTo,
_from,
tokenTotalFeeAmount,
0,
L2GasParams({

_maxSubmissionCost: _maxSubmissionCost,
_maxGas: _maxGas,
_gasPriceBid: _gasPriceBid

}),

Trail of Bits 19 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/token-bridge-contracts/blob/ce11f8047c5c705717892dd599b1dd5ea09ab2c8/contracts/tokenbridge/ethereum/gateway/L1OrbitERC20Gateway.sol#L60-L85
https://github.com/OffchainLabs/token-bridge-contracts/blob/07234a0026a2bc01164227173eb11fa4d84cc298/contracts/tokenbridge/ethereum/L1ArbitrumMessenger.sol#L35-L59

_data
);

}

Figure B.6: tokenTotalFeeAmount is mapped to _l1CallValue. (L1OrbitERC20Gateway)

function _initiateDeposit(
address _refundTo,
address _from,
uint256, // _amount, this info is already contained in _data
uint256 _maxGas,
uint256 _gasPriceBid,
uint256 _maxSubmissionCost,
uint256 tokenTotalFeeAmount,
bytes memory _data

) internal override returns (uint256) {
// The `_l2CallValue` is set to `0` when bridging ERC20 tokens.
uint256 _l2CallValue = 0;

return
sendTxToL2CustomRefund(

inbox,
counterpartGateway,
_refundTo,
_from,
tokenTotalFeeAmount,
_l2CallValue,
L2GasParams({

_maxSubmissionCost: _maxSubmissionCost,
_maxGas: _maxGas,
_gasPriceBid: _gasPriceBid

}),
_data

);
}

Figure B.7: tokenTotalFeeAmount is mapped to _l1CallValue. (L1OrbitERC20Gateway)

● Be consistent with a function naming convention of prepending an underscore “_”
for internal functions. This can help detect which functions are important for access
control checks.

function inboundEscrowTransfer(
address _l1Token,
address _dest,
uint256 _amount

) internal virtual {
// this method is virtual since different subclasses can handle escrow

differently
IERC20(_l1Token).safeTransfer(_dest, _amount);

}

Trail of Bits 20 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/token-bridge-contracts/blob/ce11f8047c5c705717892dd599b1dd5ea09ab2c8/contracts/tokenbridge/ethereum/gateway/L1OrbitERC20Gateway.sol#L60-L85
https://github.com/OffchainLabs/token-bridge-contracts/blob/ce11f8047c5c705717892dd599b1dd5ea09ab2c8/contracts/tokenbridge/ethereum/gateway/L1OrbitERC20Gateway.sol#L60-L85

/**
* @dev Only excess gas is refunded to the _refundTo account, l2 call value is
always returned to the _to account
*/
function createOutboundTxCustomRefund(

address _refundTo,
address _from,
uint256, /* _tokenAmount */
uint256 _maxGas,
uint256 _gasPriceBid,
uint256 _maxSubmissionCost,
bytes memory _outboundCalldata

) internal virtual returns (uint256) {

Figure B.8: inboundEscrowTransfer and createOutboundTxCustomRefund do not follow
the convention seen for internal functions. (L1ArbitrumGateway)

Trail of Bits 21 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/token-bridge-contracts/blob/07234a0026a2bc01164227173eb11fa4d84cc298/contracts/tokenbridge/ethereum/gateway/L1ArbitrumGateway.sol#L139-L159

