

PUBLIC

Code Assessment

of the Fund Distribution

Smart Contracts

March 20, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Findings 12

6 Resolved Findings 13

7 Notes 15

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Offchain Labs team,

Thank you for trusting us to help Offchain Labs with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Fund Distribution
according to Scope to support you in forming an opinion on their security risks.

Offchain Labs implements a fund router to collect funds to the Arbitrum's DAO treasury deployed on
Arbitrum One from various rollups and chains (Arbitrum Nova, or Orbit chain via Ethereum).

The most critical subjects covered in our audit are the correct use of Arbitrum's bridging mechanism, the
safety of the funds and the correct implementation of the distribution intervals. No major issues were
detected. Security regarding all the aforementioned subjects is high.

The general subjects covered are functional correctness, gas efficiency, specification and
documentation. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but do not replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Fund Distribution repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 6 March 2024 5d945cf8d2d100928117e1b523257ebd7146fef1 Initial Version

2 19 March 2024 61f4f60384e2ecba8250287dfb2778ce30bd82b0 Final Version

For the solidity smart contracts, the compiler version 0.8.16 was chosen.

The contracts under the src/FeeRouter/ directory are the following:

• ChildToParentRewardRouter.sol

• DistributionInterval.sol

• ParentToChildRewardRouter.sol

2.1.1 Excluded from scope
All contracts not mentioned in scope are considered out of scope. Some of the contracts are going to be
executed by rollups different than Ethereum. The differences in the semantics of the EVM opcodes that
could be introduced by the Sequencers are beyond the scope of this audit. The contracts in scope make
use of Arbitrum's bridging mechanism. Bridging is assumed to work correctly. Moreover, tokens being
transferred can specify their own gateways. Such gateways could be potentially malicious or
malfunctioning. Such behaviors are considered out-of-scope for this review. Finally, tokens may not be
able to be bridged in any direction due to mistakes in their implementation. Transferring tokens to the
treasury could fail. We assume that only properly implemented tokens are going to be used. The
examination of a token's malicious behavior focused solely on its potential to disrupt the bridge's
functionality concerning other tokens or native assets.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Offchain Labs implements a set of smart contracts that utilize Arbitrum's bridges to send ETH or ERC20
tokens from one chain to another. This functionality facilitates the collection of fees on other Arbitrum
chains and forwards them to the DAO Treasury on ArbOne: Fees on the source Arbitrum chain get
accumulated. Afterwards, they are firstly sent to L1, then from L1 to the DAO treasury on ArbOne.

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

As can be seen from the example above, in order to collect fees on other L2 chains and send them to
ArbOne, two main functionalities are required:

1. Sending fees from the source L2 to L1: accomplished by ChildToParentRewardRouter

2. Forwarding them from L1 to the target L2: implemented by ParentToChildRewardRouter
through retryable tickets

Both of which inherit from DistributionInterval to avoid spamming.

In this review, we usually refer to the parent chain as L1 and the child chain as L2, as the contracts under
review use the same terminology. In general, these contracts should work for any parent-child chain
pairing, where the child chain follows Arbitrum semantics. Hence, it also covers L2-L3 messaging, where
the child (L3) uses Arbitrum One as the parent.

In what follows, we first introduce some basic concepts of Arbitrum chains and then delve into each
concept separately.

2.2.1 ArbOS
Arbitrum extends EVM to provide the required functionalities for L2. One of the core functionalities of
ArbOS is to support cross-chain messaging in both directions. Any account on any side can initiate a
transaction to be executed on the other chain asynchronously. To facilitate cross-chain messaging,
ArbOS provides:

1. Address Aliasing: A transaction sent from an address A on L1 to L2, using A as the msg.sender
on L2 can be problematic as there could be already another contract deployed at the address A on
L2. In this case, L2 cannot distinguish between them, it opens the window for impersonating
attacks. To solve this problem, the address of an L1 sender A is represented as

. As the deployment address of a
contract is calculated through a cryptographic hash of the sender it is computationally infeasible to
find a collision between an aliased address and another L2 address.

2. Delayed Inbox: A set of L1 contracts which queues L1 messages. Then, the sequencer submits
the batches of messages in the Delayed Inbox and writes them into the main Inbox. If the
sequencer fails to include a message from the Delayed Inbox to the Main Inbox within a predefined
interval, anyone can forcefully include the message in the Main Inbox. The force inclusion
functionality guarantees liveness in the system.

3. Outbox: Like any other optimistic rollup, for L2 messages to be eventually executed on L1, the
dispute period of the Rollup Block (RBlock) containing this message should be passed. Initiating L2
to L1 transactions starts from ArbSys precompile (which is part of the ArbOS). When an RBlock is
confirmed, a user can call the Outbox contract with a Merkle proof of its message being included in
the RBlock.

2.2.2 Retryable Tickets
When L1 contracts submit a transaction to L2, it runs essentially asynchronously on L2, so the submitter
cannot theoretically make sure if the forwarded transaction is successfully run. This can cause issues.
For example, in the case of depositing funds from L1 to L2, if the submitted transaction on L2 fails, the
user's funds can be lost. To tackle this potential issue, Arbitrum introduced Retryable Ticket system.
Being retryable here means if the execution of the submitted transaction on L2 fails, ArbOS creates a
retryable ticket for it to be retried again. And if the transaction had callvalue attached to it, ArbOS escrows
it. Later any user can redeem the ticket by providing enough gas to retry it. The retry will run with the
original sender, callvalue, and data, with the only difference being the gas parameters and who is paying
for the gas.

In this section we briefly look at the lifecycle of retryable tickets:

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

1. Submission: Inbox contract on L1 provides some functions to create retryable tickets. While some
functions like createRetryableTicket() require the user to provide a reasonable amount of
funds (to create the ticket and try its execution on L2 at least once), this contract also offers some
functions that do not enforce this requirement like unsafeCreateRetryableTicket(). All of
these functions create a retryable ticket with a unique TicketID. Creation of this ticket on L1
triggers ArbRetryableTx precompile on L2 to emit an event of TicketCreated with the ID set
upon creation of the ticket on L1.

2. Redemption: As mentioned before creation of a ticket on L1 is asynchronous from its execution on
L2, hence a successful L1 creation does not imply a successful redemption. Once
ArbRetryableTx creates a new ticket, two conditions are checked to see if the creation can be
followed by an immediate redemption. 1) the user's L2 balance can cover gas and 2) if the
maximum fee determined by the submitter on L1 is at least l2Basefee. If both of the conditions
are met, ticket submission is followed by an attempt to redeem it. It can either fail or succeed:

• Success: It will execute with the sender, destination, callvalue, and calldata of the original
submission. Excessive amount of fees are directed to the address set by the submitter.

• Failure: The submission fee is collected on L2 to cover the resources required to
temporarily keep the ticket in memory for one week. In this case, any user can try to
redeem this ticket.

To manually redeem a ticket after failure, ArbRetryableTx.redeem() is called with the TicketID as
its input. In this case, ArbOS internally enqueues the redemption and guarantees that this redeem
transaction will be tried at least once before moving to the next non-redeem transaction in the current
block. If this one week elapses without a successful redemption, the ticket expires and will be
automatically discarded, meaning that any message and value (other than the escrowed callvalue by
ArbOS) it carries could be lost without the possibility of being recovered.

2.2.3 Token Bridging
Provided with a cross-chain messaging protocol, Offchain Labs implements a "canonical" bridging
mechanism. As bridging different tokens may need different logic to run on each chain, in the most
general form, we see a pair of contracts on L1 and L2. These are called Gateway s. Gateway Router
contracts are responsible for tracking the mapping of L1 tokens to their Gateways (which in turn map
them to their L2 counterpart tokens). Apart from that, each Gateway Router has a default gateway, which
will be used if, for a given token, no gateways are registered. If a token is bridged from L1 and its
counterpart does not already exist on L2 a new proxy contract is deployed implementing a basic ERC20
functionality.

2.2.4 DistributionInterval
This contract offers a function canDistribute(). This function takes as input the address of a token or
ETH (encoded as 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) and checks whether since
the last distribution of the token at least minDistributionIntervalSeconds has passed.

2.2.5 ParentToChildRewardRouter
This contract is responsible for receiving ETH/ERC20 tokens and forwarding them to a predefined
destination on the child chain. For example, if the destination chain is Arbitrum One, the destination
should be the Arbitrum DAO treasury. The contracts have two public functions. One is designated for
forwarding ETH and the other one for ERC20 tokens.

1. receive() funds willing to be sent to the other chain should be firstly forwarded to this contract.

2. routeNativeFunds() After collecting ETH, anyone can call this function to forward the ETH to
the destination address on the target chain. The caller should provide it with extra fees to make the

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

creation and keeping of retryable tickets on L2 possible. To create retryable tickets, this function
does the following:

• ETH can be distributed

• gas limit and its price are higher than the minimum

• msg.value covers the required gas to submit the retryable ticket and try to execute it
once

• finds excessFeeRefundAddress which is the aliased address on L2, if the caller is a
contract. Otherwise, the address of the caller

• calls unsafeCreateRetryableTicket() on the inbox with the predefined
destination, while forwarding all balances of this contract to the inbox.

Please note, that the whole balance of this contract is forwarded to the inbox. Part of it (msg.value)
covers the fee to create a retryable ticket. The rest is the callvalue on L2 (the actual amount being sent to
destination on L2)

3. routeToken() sends all the balance of parentChainTokenAddr belonging to this contract to
the corresponding gateway and finally makes a call to outboundTransferCustomRefund() on
this gateway. This function assures that msg.value is enough to cover the fees and creates a
retryable ticket. It also checks that there exists a peer ERC20 on L2. It is worth mentioning that
down the call path of outboundTransferCustomRefund(), createRetryableTicket() is
called which assures that msg.value is enough to cover the fees to create a retryable ticket and
L2 call value. Excessive fees are refunded to msg.sender or its L2 alias, depending on whether
msg.sender is an EOA or a contract. While callValueRefundAddress (i.e., the L2 address to
which the l2CallValue is credited if the ticket times out or gets canceled) is L2 alias of
ParentToChildRewardRouter.

When sending native funds or tokens from L1 to L2, the same least gas is required _minGasLimit,
although sending ERC20 tokens are expected to consume more, due largely to their extra transfer logic.
We assume that Upon deployment, a value greater than the greater of the two values (expected to be the
value for a token transfer) should be set.

2.2.6 ChildToParentRewardRouter
As sending funds/tokens from L2 to L1 does not involve creating and keeping retryable tickets, this
contract has no checks on msg.value being enough to cover the creation of tickets and their execution.
Hence, if there is no value to be sent or the trial to send is earlier, in contrast to
ParentToChildRewardRouter, it just skips and does not revert. Likewise, however, it has two main
functions:

1. routeNativeFunds(): if there is a non-zero balance of ETH and if it can be distributed (i.e., time
has elapsed), it forwards all of its balance to the ArbSys.withdrawEth() precompile at
0x0000000000000000000000000000000000000064 which sends the ETH to
parentChainTarget on L1.

2. routeToken firstly, finds the respective gateway for the token, approves its balance for the
gateway, and calls outboundTransfer() on the gateway router. Consequently, an outbound
transaction is created which calls sendTxToL1() on the ArbSys precompile.

2.2.7 Trust Models and Assumptions
ParentToChildRewardRouter is considered trustless. Any user can interact with its functions to send
ETH and ERC20 to the destination (DAO treasury) on L2.

ChildToParentRewardRouter is also treated as trustless. Any user can call its functions.

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

We assume for each token to be bridged the correct gateway is set and that the bridge functions
properly. Also, we assume that the contracts will be correctly configured.

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Informational Findings 2

• Code CorrectedReseting Approvals

• Code CorrectedMissing Checks

6.1 Missing Checks
Informational Version 1 Code Corrected

CS-OCFD-002

Sanity checks are missing for the following values:

• ParentToChildRewardRouter.constructor: minGasPrice, minGasLimit, and
destination

• ChildToParentRewardRouter.constructor: parentChainTarget

Moreover, in ParentToChildRewardRouter.routeToken(), when querying the gateway for a
token, there is a case where the zero address is returned e.g., when the token is DISABLED. In such a
case, routeToken() will fail late during outboundTransferCustomRefund() consuming more gas
than it should. Note that routeToken() could already fail during the approve call to address(0), since
most token implementations prevent that. However, the ERC20 standard doesn't explicitly disallow giving
approval to address(0).

Code corrected:

Offchain Labs has addressed destination and parentChainTarget, but left the others, mentioning:

We’ve added sanity checks for designation and parentChainTarget.
We have not included sanity checks for minGasPrice or minGasLimit because although for
the Nova-to-Treasury-Router and Orbit-Chains-to-Treasury-Router deployments non-zero
values will be used, we believe the contracts should be unopinionated about this for other,
future use cases.

About handling the case of a disabled token:

We think the cost of adding in additional check in the normal case
(token isn’t disabled) outweighs the benefit of gas savings from reverting earlier in the rare
case (token is disabled).

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6.2 Reseting Approvals
Informational Version 1 Code Corrected

CS-OCFD-001

When transferring from the parent chain an approval must given to the gateway of the specific token. The
allowance is specified to be equal to the amount to be transferred. This means that by the end of the
transaction, the full allowance will be consumed and set to 0 releasing the repsective storage slot. In
case, the allowance was set to a non-zero value the slot would be retained and thus the transaction
would be cheaper.

Code corrected:

The allowance is set to value + 1 therefore the slot is not released. Note that in case the allowance
was always reset to the same value e.g., 1 the transaction would be even cheaper. In the current
implementation the allowance always increases by one at the end of the transaction.

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Contract Check
Note Version 1

In order to check whether an aliasing should be used for the excessFeeRefundAddress,
Address.isContract() is used. The function checks whether there is a bytecode deployed in this
address. However, the call returns false if the contract is not yet deployed but it made the call during its
construction. This could potentially set the excessFeeRefundAddress to an already deployed contract
on L2 which might be unexpected.

7.2 Native Assets From
ChildToParentRewardRouter
Note Version 1

Each ChildToParentRewardRouter is dedicated to exactly one token. Moreover, one can create a
dedicated ChildToParentRewardRouter for native ETH by setting the
parentChainTokenAddress to address(1). However, everyone can still use any of the token
child-to-parent routers to bridge native tokens. Using a dedicated native funds gateway removes the logic
of supporting native funds on each implementation.

Acknowledged:

Offchain Labs acknowledged the existence of this possibility:

Explicitly disabling tokens with address(1) was only
introduced to avoid the awkwardness of using an arbitrary non-token address when only
native funds are intended (i.e., to route a chain’s native fees). We don’t think it’s necessary
to provide the option of explicitly disabling native fees.

7.3 No Fallback on Cancellation
Note Version 1

During the transfer of native ETH from parent chain to child, a low level call is created on L2 with sender
the original msg.sender (maybe aliased) on L1 and receiver the destination contract. If the ticket is
redeemed successfully then the call will trigger the receive() function of the destination contract on L2.
In case the ticket is expired, the escrowed amount, namely the amount specified from l2CallValue, will
be credited to the destination address without triggerring the fallback. In the current scope this is not an
issue. However, if the logic of the destination address is updated, one should take into account this
behavior.

Offchain Labs - Fund Distribution - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 ArbOS
	2.2.2 Retryable Tickets
	2.2.3 Token Bridging
	2.2.4 DistributionInterval
	2.2.5 ParentToChildRewardRouter
	2.2.6 ChildToParentRewardRouter
	2.2.7 Trust Models and Assumptions

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Missing Checks
	6.2 Reseting Approvals

	7 Notes
	7.1 Contract Check
	7.2 Native Assets From ChildToParentRewardRouter
	7.3 No Fallback on Cancellation

